Improved light output power of GaN-based ultraviolet light-emitting diode using a mesh-type GaN/SiO$_2$/Al omnidirectional reflector

Jun-Youn Won1, Dae-Hyun Kim1, Daesung Kang1,2, Jun-Suk Sung2, Da-Som Kim3, Sun-Kyung Kim3, and Tae-Yeon Seong*1,4

1Department of Nanophotonics, Korea University, Seoul 02841, Korea
2LED Division, LG Innotek Co. Ltd., Paju, Gyeonggi-do 10842, Korea
3Department of Applied Physics, Kyung Hee University, Gyeonggi-do 17104, Korea
4Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea

Received 24 October 2016, revised 10 March 2017, accepted 13 March 2017
Published online 29 March 2017

Keywords aluminum, GaN, light extraction, light-emitting diodes, omnidirectional reflectors, SiO$_2$

*Corresponding author: e-mail tyseong@korea.ac.kr, Phone: +82 2 3290 3288, Fax: +82 2 928 3584

We investigated the effect of a mesh-type GaN/SiO$_2$/Al omnidirectional reflector (ODR) on the light output power of AlGaN/InGaN-based ultraviolet (365 nm) LEDs and compared their performance with that of LEDs with a GaN/ITO/Al reflector. Using the scattering matrix method, the normal incidence reflectance was calculated to be 93.7% for the GaN/SiO$_2$ (62 nm)/Al ODR and 79% for the GaN/ITO (30 nm)/Al reflector. The Ag/Ni/Al/Ni (52 nm/10 nm/200 nm/20 nm) contact showed a specific contact resistance of 3.2 \times 10$^{-5}$ Ωcm2 after annealing at 500 °C for 1 min. The forward-bias voltages at 20 mA of LEDs with ODR were in the range of 3.49–3.54 V, which were similar to that of LEDs with an ITO/Al reflector (3.51 V). The LEDs with ODR had series resistances in the range of 14.8–12.5 V, whereas the LED with an ITO/Al reflector showed 11.7 V. The LEDs with ODR yielded 9.3–19.9% higher light output power at 20 mA than the LED with an ITO/Al reflector. The improved light output power was attributed to the optimization of the high reflectance of the ODR (reflective area) and contact area.

1 Introduction AlGaN/InGaN-based ultraviolet (UV) light-emitting diodes (LEDs) are important for their applications in water and air purification, and chemical and biological detection systems [1, 2]. However, there are important technological issues that need to be solved for the realization of high external quantum efficiency (EQE) of UV LEDs. For example, injection and current-spreading efficiencies ought to be further enhanced [3, 4]. In particular, high light extraction efficiency (LEE) should be attained [5]. Flip-chip LEDs and vertical LEDs require reliable reflectors that have high reflectance as well as low contact resistance. In this regard, Ag-based schemes have been widely used, because they have high reflectance in the visible spectrum (>90%) and relatively low contact resistance [6–9]. Nonetheless, Ag contacts have very low reflectance in the UV spectrum [10]. Thus, Al-based reflectors have increasingly attracted interest as an alternative, because they have high reflectance in the visible and UV spectra. However, there is a critical problem with Al-based reflectors; Al has a low work function, and therefore, Al can form ohmic contacts only to n-type GaN, but not to p-type GaN [11, 12]. To solve this problem, nanopixel contacts (size: 1 \times 1 μm2) were combined with Al reflectors to enhance the light extraction in UV LEDs [13]. It was shown that LEDs fabricated with nanopixel contacts yielded 90% higher light-output power than LEDs with conventional Pd contacts. It was also reported that the use of Ag/ITO (3 nm/100 nm) interlayers was effective in forming Al-based p-type ohmic contacts for GaN-based flip-chip LEDs [14]. The Ag/ITO/Al reflector had a specific contact resistance of \sim10$^{-5}$ Ωcm2 and a reflectance of 85% at 460 nm, which were better than those of the conventional Ni/Au contacts. Furthermore, to obtain high reflectance, different
types of reflectors have been investigated, including distributed Bragg reflectors (DBRs) and omnidirectional reflectors (ODRs). Incidentally, ODRs have an advantage over DBRs. Specifically, unlike a DBR, an ODR can maintain a high reflectivity in wider ranges of wavelength and incidence angle. For instance, an Ag-based ODR consisting of RuO$_2$, SiO$_2$, and p-GaN for GaInN-based flip-chip LEDs was calculated to give an angle-averaged reflectance of 98% at 450 nm, which is larger than those for a 20 period Al$_{0.25}$Ga$_{0.75}$N/GaN DBR (49%) and an Ag reflector (94%) [15]. Consequently, GaInN LEDs with the RuO$_2$/SiO$_2$/Ag ODR showed higher light output power at 20 mA than those with a conventional Ni/Au contacts. These results indicate that for the fabrication of high-EQE UV LEDs, the development of optimal Al-based ODRs with high reflectance in the UV spectrum and low-resistance ohmic contacts is crucial. Thus, in this study, high-UV-reflectance Al was combined with SiO$_2$ and p-GaN to form mesh-type Al-based ODRs. AlGaN/InGaN-based UV (365 nm) LEDs were fabricated with the ODRs and an Ag/Ni mesh ohmic contact. For comparison, UV (365 nm) LEDs with ITO/Al reflectors were also fabricated.

2 Experimental UV (365 nm) AlGaN/InGaN multiple quantum-well (MQW) LED structures were grown on (0001) sapphire substrates by a metalorganic chemical vapor deposition (MOCVD) system. The LED structures consisted of a 2-nm thick p-GaN:Mg layer, 100-nm thick p-AlGaN:Mg ($n_a = 5 \times 10^{17}$ cm$^{-3}$) layer, 20-nm thick AlGaN electron-blocking layer, 100-nm thick active layer, 200-nm thick spreading layer, 2.0-μm thick n-type AlGaN:Si ($n_n = 5 \times 10^{18}$ cm$^{-3}$) layer, and a 2.0-μm thick undoped GaN layer on a sapphire substrate. Before the chip process, the samples were cleaned with acetone, methanol, and DI water for 5 min per cleaning agent and finally dried in a N$_2$ stream. A quarter-wavelength thick ($\lambda/(4n_h)$) SiO$_2$ layer was deposited on the LED structure by a plasma enhanced chemical vapor deposition (PECVD) system. A mesh structure was patterned on the SiO$_2$ layer by standard photolithography (Fig. 1), followed by a buffered oxide etch solution-etching to expose the p-GaN. Subsequently, Ag/Ni (52 nm/10 nm) layers were electron-beam (e-beam)-evaporated on the mesh-patterned LED structures. The widths of the mesh patterns were 10, 15, and 20 μm. To form Ag/Ni ohmic contacts, the samples were rapid-thermal-annealed at 500 °C for 1 min in air, where the Ni (10 nm) layer was capped to suppress Ag agglomeration, namely, to improve the thermal stability of the Ag contact [16]. Finally, an Al/Ni (200 nm/20 nm) layer was e-beam-evaporated on the entire sample surface. The samples fabricated with the mesh structures with line widths of 10, 15, and 20 μm are referred to herein as “ODR 1,” “ODR 2,” and “ODR 3,” respectively. For the purpose of comparison, a LED with an ITO/Al/Ni (30 nm/200 nm/20 nm) reflector was also fabricated and is referred to herein as an “ITO/Al reflector.” For all LED chips, a Ni (20 nm) layer was deposited on the Al (200 nm) layer to prevent the oxidation of Al, and a Cr/Ni/Au (20 nm/25 nm/30 nm) layer was deposited as an n-type electrode. For the Ag/Ni and Ag/Ni/Al/Ni contacts, circular transfer length method (CTLM) patterns were formed by the standard photolithographic technique to measure the specific contact resistance. The outer radius of the pattern was 200 μm and the gap spacing between the outer and inner circles was varied from 5 to 40 μm. Current–voltage (I–V) measurements were performed with a high-current source-measuring unit (Keithley 238). The output powers of the UV LED chips (800 × 300 μm2) were characterized by a Newport dual-channel powermeter. A scattering matrix method was used to calculate the reflectivity $R(\theta)$ at 365 nm of the GaN/SiO$_2$/Al ODR and a GaN/ITO/Al layer.

3 Results and discussion Figure 1 shows a schematic diagram of an LED with a mesh-type GaN/SiO$_2$/Al ODR, and cross-sectional views of a GaN/SiO$_2$/Al ODR and an ITO/Al reflector. Figure 2 exhibits the reflectances of GaN/ITO/Al and GaN/SiO$_2$/Al mirrors at 365 nm as functions of incidence angle. The scattering matrix method was used to calculate their angular reflectance for two orthogonal polarizations (i.e., transverse electric [TE] and transverse magnetic [TM]) with a SiO$_2$ layer thickness of 62 nm. For the calculation, the employed parameters were the refractive index of GaN ($n_{GaN} = 2.65$, the extinction coefficient of GaN ($k_{GaN} = 0.26$, $n_{SiO2} = 1.47$, $n_{Al} = 0.41$).

![Figure 1](image_url) Figure 1 (a) Schematic diagram of 3-D LED structure fabricated with GaN/SiO$_2$/Al ODR. Schematic cross-sectional views of LED structures fabricated with (b) GaN/SiO$_2$/Al ODR, and (c) ITO/Al reflector.
$k_{Al} = 4.43$, $n_{ITO} = 2.10$, and $k_{ITO} = 0.02$ [17–20]. A plane wave of $\lambda = 365$ nm was incident from a GaN medium. Both TE and TM calculation results (Fig. 2a and b, respectively) illustrate that the SiO$_2$/Al ODR offers a decent reflectance below and above the critical angle ($\theta_c = 34^\circ$). This is because a constructive interference condition with partial reflected waves was satisfied. The calculation shows that the normal-incidence reflectance is higher for the GaN/SiO$_2$/Al ODR than for the GaN/ITO/Al reflector. The normal incidence reflectance is 93.7% for the GaN/SiO$_2$/Al ODR and 79% for the GaN/ITO/Al reflector. The large dips in the GaN/ITO/Al and GaN/SiO$_2$/Al reflectors below the total reflection angle are caused by Brewster’s angle, which is the angle of incidence at which light with a particular polarization is transmitted through a surface without reflection [21]. Meanwhile, the side dips in the GaN/SiO$_2$/Al ODR are due to the surface plasmon effect [22].

Figure 3 shows the I–V characteristics of the Ag/Ni and Ag/Ni/Al/Ni ohmic contacts. The Ag/Ni layers were annealed at 500°C for 1 min in air, after which an Al/Ni layer was deposited to form Ag/Ni/Al/Ni contacts. Measurements showed that the specific contact resistances of the Ag/Ni and Ag/Ni/Al/Ni contacts were 9.4×10^{-4} and 3.2×10^{-5} Ωcm2, respectively.

Figure 4 exhibits typical I–V characteristics of the UV (365 nm) AlGaN/InGaN MQW LEDs fabricated with GaN/SiO$_2$/Al and ITO/Al reflectors, and Ag/Ni/Al/Ni mesh contacts. The forward-bias voltages at 20 mA of the LEDs with ODR 1, ODR 2, and ODR 3 are estimated to be 3.54, 3.49, and 3.49 V, respectively, which are nearly equal to that of the LED with an ITO/Al reflector (reference), 3.51 V. The LEDs with ODR 1, ODR 2, and ODR 3 gave series resistances of 14.8, 13.1, and 12.5 Ω, respectively, whereas the LED with an ITO/Al reflector had a series resistance of 11.7 Ω. The forward-bias voltages and series resistances decrease with increasing mesh width. This is attributed to the increase in p-type contact area from 12.8 to 25.6%.

Figure 5 displays the light–output-current (L–I) characteristics of the UV LEDs fabricated with ODRs and an ITO/Al reflector. The LEDs fabricated with ODR 1, ODR 2, and ODR 3 yielded 9.3, 19.9, and 16.8% higher light
output power at 20 mA, respectively, than the LED with an ITO/Al reflector. The improved light output power (LOP) can be attributed to the higher reflectance of the SiO$_2$/Al ODR, that is, the enhanced LEE of the UV LEDs. The LED with the 15-μm wide mesh contact (ODR 2) exhibited the highest light output power. Kim et al. [23], investigating the effect of the microcontact size on the LOP of near UV (400 nm) LEDs with GaN/SiO$_2$/Al ODR, reported that the LOP increased with increasing the size of the NiZn/Ag microcontact. This was attributed to the larger effective light-emitting area, that is, the optimization of the area of all the microcontacts and the current-spread area. Thus, in a similar manner, the higher LOP of the LED with ODR 2 can also be attributed to the optimal emitting area and contact area. The LOP of the LED with ODR 3, which has the widest contact area (25.6%), has a lower LOP than the LED with ODR 2. This could be explained in terms of the smaller effective area of ODR 3 due to the increased Ag/Ni mesh area, leading to less reflective area [24]. This indicates that the LOP and forward voltage of UV LEDs with GaN/SiO$_2$/Al ODR can be further improved by the optimization of the line width and the mesh structure patterns.

4 Conclusions GaN/SiO$_2$/Al ODRs were used to improve the light output power of AlGaN/InGaN-based UV (365 nm) LEDs and their performance was compared with that of a GaN/ITO/Al reflector. The calculated normal incidence reflectances of the GaN/SiO$_2$ (62 nm)/Al and GaN/ITO (30 nm)/Al reflectors were 93.7 and 79%, respectively. The Ag/Ni/Al/Ni contact provided a specific contact resistance of $3.2 \times 10^{-5} \Omega \text{ cm}^2$. The LEDs with ODRs showed similar forward-bias voltages at 20 mA compared to the LED with an ITO/Al reflector. The LEDs with ODRs yielded higher light output power at 20 mA than the LED with an ITO/Al reflector. This result implies that the use of the GaN/SiO$_2$/Al ODRs with Ag/Ni mesh contacts could serve as a promising reflector for the fabrication of high-performance UV LEDs.

Acknowledgements This work was supported by Brain Korea 21 program funded by the Ministry of Science, ICT, and Future Planning, and LED Biz division of LG Innotek Co. Ltd.

References